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We generalize past work on quantum sensor networks to show that, for d input parameters, entanglement can
yield a factorO(d ) improvement in mean-squared error when estimating an analytic function of these parameters.
We show that the protocol is optimal for qubit sensors, and we conjecture an optimal protocol for photons
passing through interferometers. Our protocol is also applicable to continuous variable measurements, such
as one quadrature of a field operator. We outline a few potential applications, including calibration of laser
operations in trapped ion quantum computing.
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I. INTRODUCTION

Entanglement is a valuable resource for quantum tech-
nology. In metrology, entangled probes are capable of more
accurate measurements than unentangled probes [1–6]. In ad-
dition to using entangled probes to enhance the measurement
of a single parameter, using entanglement to estimate many
parameters at once, or a function of those parameters, has
recently been an area of interest due to potential applications
in tasks such as nanoscale nuclear magnetic resonance imag-
ing [7–15].

In this work, we are interested in generalizing the work of
Ref. [15], which demonstrated a lower bound on the variance
of an estimator of a linear combination of d parameters cou-
pled to d qubits. We will generalize this approach to measur-
ing an arbitrary real-valued, analytic function of d parameters,
and we show that entanglement can reduce the variance of
such an estimate by a factor of O(d ). Finally, we present
a protocol that achieves optimal variance asymptotically in
the limit of long measurement time. In addition, when the
parameters are coupled to d interferometers or to a combina-
tion of interferometers and qubits, we propose an analogous
Heisenberg-scaling protocol to improve measurement noise.
However, in this case we lack a proof of optimality. We can
also use the protocol presented in Ref. [16] to couple the
parameters to continuous variables detected by homodyne
measurements.

We will also examine the application of such a protocol to
field interpolation. Suppose sensors are placed at d spatially
separated locations, but we wish to know the field at a point
with no sensor. We may pick a reasonable ansatz for the field
with no more than d parameters, use our d measurements to
fix the degrees of freedom of that ansatz, and compute the
field at our desired point. Because the field of interest is a
function of the field at d other locations, our protocol offers

reduced noise over performing the same procedure without
using entanglement.

II. SETUP

In this work, bold font is used to indicate vectors, hats (as in
Ĥ ) indicate operators, and variables with a tilde (such as f̃ ) are
estimators of the corresponding quantity with no tilde (such as
f ). The notation EY [X ] means the expected value of X over
all possible Y . If we merely write E[X ], then we average over
all parameters required to define X (e.g., if Y depended on Z ,
then EZ [EY [X ]]). We define the variance, VarY [X ], similarly.

We consider a system with d sensor nodes, where node
i consists of a single qubit coupled to a real parameter θi
(see Fig. 1), and we suppose that the state evolves under the
Hamiltonian

Ĥ = Ĥc(t ) + 1
2θiσ̂

z
i , (1)

where σ̂
x,y,z
i are the Pauli operators acting on qubit i, and

Ĥc(t ) is a time-dependent control Hamiltonian that we choose,
which may include coupling to ancilla qubits. Here, and
throughout the paper, repeated indices indicate summation.
We want to measure an arbitrary real-valued, analytic function
f (θ) of d unknown parameters θ = 〈θ1, . . . , θd〉 for time ttotal.
We would like to determine how well the quantity f (θ) can
be estimated, and find a protocol for doing so. To specify
a protocol, we choose an input state, a control Hamiltonian
Ĥc(t ), and a final measurement.

For a general estimator, we use the mean-squared error
(MSE)M of our estimate f̃ from the true value f (θ) as a figure
of merit. Explicitly,

M = E[( f̃ − f (θ))2] = Var f̃ + (E[ f̃ ] − f (θ))2. (2)

Thus the MSE accounts for both the variance and the bias
of the estimator f̃ . By proving lower-bounds for M and
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FIG. 1. An illustration of a quantum sensor network of spatially
separated nodes. At each node, there is an unknown parameter θi
coupled to a qubit, which accumulates phase proportional to θi.

then showing that these bounds are saturable, we will be
demonstrating protocols that are optimal in this combination
of bias and variance.

III. LOWER BOUND ON ERROR

We now identify the minimum possible error of an estima-
tor of f (θ), which measures for time ttotal. For any estimator f̃ ,
biased or otherwise, which uses samples from a probabilistic
process (such as physical experiments) to estimate the value
f (θ), the MSE is bounded by [17]

E[( f̃ − f (θ))2] � 1

F
� 1

FQ
, (3)

where F is the Fisher information for the parameter f , and
FQ is the quantum Fisher information evaluated over our input
state, with FQ � F always [18]. Bounds on the error of an
estimator in terms of the Fisher information are known as
Cramér-Rao bounds. The Fisher information measures the
sensitivity of the sampled probability distribution to changes
in the parameters θ. While F tells us something about a par-
ticular experimental setup, FQ is maximized over all possible
experiments that could be performed on a state.

To evaluate the Fisher information for our function of
interest f , we will use the method presented in Ref. [19]
and developed for linear functions in Ref. [15]. We start by
evaluating the generator ĝ = ∂Ĥ/∂ f as defined in Ref. [19].
By first writing the chain rule, we find that

ĝ = ∂Ĥ

∂ f
= ∂Ĥ

∂θi

∂θi

∂ f
= 1

2
σ̂ i
z

∂θi

∂ f
. (4)

Note that FQ can be upper-bounded by the seminorm of this
generator, FQ � t2‖ĝ‖2s [19]. (The seminorm of an operator
is the difference between its maximum and minimum eigen-
values.) However, to evaluate the seminorm, we will need to
evaluate the partial derivative in Eq. (4). To do so, we must
specify a full basis of functions so that the partial derivative
can be defined, which requires specifying which variables are
held constant during differentiation. We suppose that a set of
functions f1, f2, f3, . . . , fN are created, with the f of interest
equal to f1, defining an invertible coordinate transformation
on a region RN around the point θ . The seminorm is then

‖ĝ‖s =
N∑
i=1

∣∣∣∣∂θi

∂ f

∣∣∣∣ =
N∑
i=1

∣∣J−1
i1

∣∣. (5)

Here, J−1
i j is an element of the Jacobian matrix of the inverse

transformation to that defined by the f functions. Depending
on which functions are chosen, the value of ‖ĝ‖s can vary,

as can be seen in Ref. [15] for linear functions. We therefore
wish to find the smallest possible ‖ĝ‖s, which will provide the
tightest possible bound on FQ. To do so, we note that J−1 and J
must obey an inverse relationship, meaning that the following
chain of inequalities holds:

1 = J1iJ
−1
i1 � |J1i|

∣∣J−1
i1

∣∣ � max
j

|J1 j |
N∑
i=1

∣∣J−1
i1

∣∣. (6)

By using the definition of the Jacobian, we can rewrite this as a
lower bound on the value of ‖g‖s in terms of partial derivatives
of f :

‖ĝ‖s =
N∑
i=1

∣∣J−1
i1

∣∣ � (
max

j

∣∣∣∣ ∂ f

∂θ j

∣∣∣∣)−1

. (7)

All that remains is to note that if we label the θi that yields
the maximum first derivative as θ1, and then choose fi = θi
for i > 1, the lower bound in Eq. (7) is met, since ∂θi/∂ f1
must be evaluated holding the other f j constant. Invoking the
resulting bound on the quantum Fisher information, we find
that the quantum Cramér-Rao bound becomes

M = E[( f̃ − f (θ))2] � 1

FQ
� max

j

∣∣ ∂ f
∂θ j

∣∣2
t2

. (8)

Although the quantum Cramér-Rao bound derived in
Eq. (8) cannot always be saturated, it can when the generators
∂Ĥ/∂θi commute, as in Eq. (1) [18]. We will show later that
the inequality in Eq. (8) can be saturated at asymptotic time
ttotal.

From this point forward, to simplify later calculation,
we define fi(θ) = ∂ f (θ)

∂θi
. This definition also generalizes to

multiple partial derivatives (i.e., fi j = ∂
∂θ j

∂ f
∂θi

).
Before moving on to the optimal protocol, we will con-

sider a protocol that does not use entanglement and does not
saturate Eq. (8) as a useful contrast to an entangled strategy.
Suppose we estimate each parameter individually, without
bias. Then the MSE E[( f (θ̃) − f (θ))2] can be written as

Munentangled = fi(θ)
2 Var θ̃i. (9)

Here we assume the measurement of each single parameter
can be made in time t with variance Var θ̃i = 1

t2 , the Heisen-
berg limit for single particles, and therefore the best possible
measurement for a nonentangled protocol [1]. Estimation
protocols that allow one to reach a variance proportional to
1/t2 without entanglement are outlined in detail in Ref. [20];
an experimental realization of single phase estimation without
entanglement was performed in Ref. [21]. While in realistic
settings a Heisenberg-limited measurement on one particle
may be challenging and include some constant overhead
above 1/t2, this assumption allows us to identify the improve-
ment possible by using entanglement. Our entanglement-free
figure of merit is

Munentangled = ‖∇ f (θ)‖2
t2total

, (10)

where the ‖ · ‖ in Eq. (10) denotes the Euclidean norm. More
generally, we use ‖v‖p to denote the p-norm of vector v. Since
Eq. (10) only saturates Eq. (8) in trivial cases in which ∇ f (θ)
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is zero in all but one component, the unentangled protocol
described is not optimal.

IV. TWO-STEP PROTOCOL

We now present a protocol that asymptotically saturates
Eq. (8). Our protocol consists of two steps. First, we make
an unbiased estimate θ̃ of θ for time t1. Second, given our
estimates θ̃, we make an unbiased measurement q̃ of the
quantity q = ∇ f (θ̃) · (θ − θ̃) using the linear combination
protocol in Ref. [15], which takes time t2. Our final estimate
is f̃ = f (θ̃) + q̃.

It can be shown that our protocol is optimal (in terms of
scaling with the total time t1 + t2) provided that the individual
estimations of the parameters satisfy E[(θ̃i − θi )4] = O(t−4

1 )
and that t1 and t2 are chosen properly. To simplify our
computations, we will make the more concrete assumption
that our initial estimates θ̃ are each normally distributed as
N (θi,Var θ̃i ). Then as computed in the Appendix, the figure
of merit for this protocol is

M = E[( f (θ̃) + q̃ − f (θ))2]

= E[Varq̃ q̃] + 2 fi j (θ) + fii(θ) f j j (θ)

4
Var θ̃i Var θ̃ j . (11)

In Eq. (11), the first term is the error resulting from the second
phase of the protocol, estimating the linear combination. The
second term is a residual error remaining from the first phase
of the protocol after it is corrected by the linear combination
measurement.

For our particular Hamiltonian Ĥ = 1
2θiσ̂

z
i , as per

Ref. [15], we know that the minimum variance of an unbiased
estimator of some linear combination α · θ given time t is

Var α̃ · θ � maxi α2
i

t2
, (12)

which can be achieved with the entangled GHZ state |ψspin〉 =
1√
2
(|0〉⊗d + |1〉⊗d ). We can apply this linear combination

protocol to the second phase of our protocol by setting α =
∇ f (θ̃). For the individual estimators of the first phase, we
use the fact that an individual estimation can be made in
time t with variance 1/t2 [1]. Using these results, we simplify
Eq. (11):

M = E

[
maxi fi(θ̃)2

t22

]
+

2 fi j (θ)+ fii (θ) f j j (θ)
4

t41

= E[maxi fi(θ̃)2]

t22
+ g1(θ)

t41
, (13)

where we have absorbed the second derivatives into g1(θ),
which does not depend on time. Without loss of generality, we
designate f1(θ̃) as the largest fi(θ̃). We then expand E[ f1(θ̃)2]
as

f1(θ)
2 + f1(θ) f1ii(θ)

t21
+ f1i(θ)2

t21
+ O((θ̃ − θ)3). (14)

We may substitute Eq. (14) into Eq. (13) to obtain

M = g2(θ)

t22
+ g3(θ)

t21 t
2
2

+ g1(θ)

t41
+ O((θ̃ − θ)3), (15)

where g2(θ) = f1(θ)2 and g3(θ) have been introduced to ab-
sorb more time-independent factors.

Optimal time allocation

To complete the protocol, we must specify how the total
time ttotal is to be allocated between t1 and t2. We want
to choose the t1, t2, under the constraint that t1 + t2 = ttotal,
which minimizes the MSE,

M = g2(θ)

t22
+ g3(θ)

t21 t
2
2

+ g1(θ)

t41
. (16)

Notice that the g1, g2, g3 functions are only dependent on θ

and not t1, so we may set the derivative of M with respect to
t1 equal to 0 and obtain

2g2(θ)

t32
+ 2g3(θ)

t32 t
2
1

= 2g3(θ)

t22 t
3
1

+ 4g1(θ)

t51
. (17)

Let r = t1/t2. Then we may rearrange to obtain

g2(θ)t
2
1 = g3(θ)

r
+ 2g1(θ)

r3
− g3(θ). (18)

Since t1 � 1, then r � 1, so the r−3 term dominates the right-
hand side. Thus, g2(θ)t21 ≈ 2g1(θ)

r3 , which implies

t1 ≈
(
2g1(θ)

g2(θ)

)1/5

t3/52 ≈
(
2g1(θ)

g2(θ)

)1/5

t3/5total. (19)

Therefore, the best possible allocation satisfies

t1 = g(θ)t3/5total, (20)

where g is a function that depends only on f and θ. In
particular, t1 = O(t3/5total ), so the fraction of time spent on t1
vanishes as ttotal → ∞. Almost all of the time is spent on t2,
the linear combination step of the two-step protocol. It can
readily be shown that Eq. (15) is asymptotically dominated by
the first term when this time allocation is chosen, which (since
t2 → ttotal) is equal to the right-hand side of the bound in
Eq. (8). In other words, this distribution of time asymptotically
achieves the optimal MSE.

The two-step protocol exhibits Heisenberg scaling as de-
fined for distributed sensing [14,15,22]. Comparing Eq. (10)
to Eq. (8) shows an improvement of O(d ), maximized when
all components of ∇ f (θ) are approximately equal. Intuitively,
the advantage is maximal when all parameters contribute, but
minimal (i.e., no advantage) when only one parameter affects
the function value. Similar behavior was noted in the linear
combination case [15].

Note that when actually implementing the protocol, the
optimal t1 is unknown since the function g that determines it
depends on the true parameters θ. However, we do not need
to use the optimal t1 to saturate the bound in Eq. (8). If t1 is
a function ct ptotal of the total time where 1

2 < p < 1 and some
constant c, then the protocol will saturate Eq. (11). Suppose
that t1 = ct ptotal for some 1

2 < p < 1 and some constant c.
Since p < 1, we see that limt→∞ t2

ttotal
= 1. Therefore, we may

substitute our t1 into the MSE formula in Eq. (15) and simplify

lim
ttotal→∞M = lim

ttotal→∞
g2(θ)

t2total
+ g3(θ)

c2t2+2p
total

+ g1(θ)

c4t4ptotal
. (21)
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FIG. 2. An example illustration of a quantum sensor network
composed of separate interferometers. In each, one arm accumulates
an unknown phase θi and the other arm is a reference port with no
phase.

Since p > 1
2 , the t

2
total term is dominant. Thus, as we defined

g2 := f1(θ)2 = maxi fi(θ)2 under the assumption that f1(θ)2

was maximal, our asymptotic error is

M = maxi fi(θ)2

t2total
, (22)

which saturates the bound of Eq. (8). Although selecting a
nonoptimal time allocation does result in a higher MSE, the
additional error is O(t−4

total ), which is insignificant asymptoti-
cally. The two-step protocol will therefore be asymptotically
optimal for a wide range of time allocations.

V. FUNCTION MEASUREMENT IN OTHER
PHYSICAL SETTINGS

We now consider a different physical setting for function
estimation. Rather than d qubits that accumulate phase for
some time t , we instead pass n photons through d Mach-
Zehnder interferometers and accumulate some fixed phase
θi encoded into each interferometer (see Fig. 2). For single
parameters, the use of entangled states to reduce noise in
this setting has been explored in Refs. [23–27], with multi-
parameter cases explored in Refs. [14,22]. In this setting, the
relevant limitation is the total number of photons used in the
measurement, rather than time. This constraint is particularly
relevant when analyzing a biological or chemical sample that
is sensitive to light, making it desirable to reduce noise with
as few photons as possible. Similar biologically motivated
situations are presented in Refs. [28–30].

For photons, a two-step protocol with similar structure
to the protocol for qubits yields reduced noise compared to
any estimate of f derived entirely from local measurements.
Suppose we allot N1 photons for the first step (individual
measurement) and N2 photons for the second step (linear com-
bination), for a total of Ntotal = N1 + N2 photons. We again
begin from the general result of Eq. (11). However, the use
of photons that can be apportioned between modes introduces
another structure to the problem. We need to partition the N1

photons into N1 = n1 + · · · + nd , putting ni photons into the
ith interferometer, as some parameters may affect our final
result more than others. Thus, in the second term of Eq. (11),
we replace Var θ̃i with 1

n2i
instead of 1

t21
[23].

The optimal variance when measuring the linear combi-
nation α · θ using N total photons is unknown. However,

Ref. [14] conjectures the optimal variance to be

Var α̃ · θ � ‖α‖21
N2

. (23)

Furthermore, Ref. [14] provides a protocol achieving the
bound in Eq. (23) using a proportionally weighted GHz state:
|ψphoton〉 = 1√

2
(|n1, 0, n2, 0, . . . 〉 + |0, n1, 0, n2, . . . 〉), where

ni = Ntotal
αi∑
α j

and where, in reference to Fig. 2, the modes
are listed from top to bottom. Note that this will only work for
α proportional to some rational vector as photons are discrete.
Since Eq. (23) is saturable, we may simplify the first term of
Eq. (11) to obtain

M = E
[‖∇ f (θ̃)‖21

]
N2
2

+ 2 fi j (θ)2 + fii (θ) f j j (θ)
4

n2i n
2
j

. (24)

For fixed f and θ , the 1
nin j

terms in Eq. (24) are minimized for
the same ratio of n1 : n2 : · · · : nd regardless of the value of the
total number of photons used, N1. Each term is proportional to
N−4
1 multiplied by some function of f , θ, and d . Therefore,

the structure of Eq. (24) becomes identical to the structure
of Eq. (15), with N1 and N2 replacing t1 and t2. As a result,
the optimal allocation of photons between N1 and N2 will
yield N1 = O(N3/5

total ) and N2 = O(Ntotal ), meaning that the N−2
2

term in Eq. (24) is dominant asymptotically. Therefore, for
photons, we may asymptotically achieve

M = ‖∇ f (θ̃‖)21
N2
total

+ O

(
1

N12/5
total

)
. (25)

This strategy is optimal if the linear combination estimation
strategy presented in Ref. [14] is optimal, as conjectured in
that work. We stress that our optimality result remains true for
spins evolving under Eq. (1) and it is only for photons that our
protocol is conjectured to be optimal.

Equation (25) also exhibits Heisenberg scaling. Suppose
we were to measure each parameter individually and then
calculate the function. When measuring the parameters indi-
vidually, we obtain the same error formula as Eq. (9), except
now we set Var θ̃i = 1

n2i
to get

Munentangled = fi(θ)2

n2i
. (26)

The optimal distribution requires an ni proportional to the
weight fi(θ)2/3, yielding an entanglement-free error of

Munentangled = ‖∇ f (θ)‖22/3
N2
total

. (27)

As with qubits, by comparing Eq. (25) with Eq. (27) in the
case in which all of the fi(θ) are approximately equal, we find
that the photonic two-step protocol yields a O(d ) improve-
ment in error over measuring each parameter individually.
This improvement when all quantities are equally important
can also be seen in Ref. [22] for the special case of f being
a linear combination. As in the qubit case, the improvement
in error is lessened when ∇ f (θ) is not approximately equal in
all components.
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In fact, this method can be extended still more generally.
Rather than cases in which the signal is imprinted on photons
by a phase shift, we can consider the protocol developed
in Ref. [16], which is capable of entanglement-enhanced
distributed sensing of continuous variables by using homo-
dyne measurements. In addition to measuring parameters in
different physical settings, we may also measure functions of
variables coupled to spins, phase-shifts of photons, continuous
variables, and any combination of these. In such a hybrid
scenario, we can still make use of the two-step protocol.
The first step, obtaining initial estimates for the individual
parameters, proceeds equivalently, since the measurements of
the spins and of the photons can be viewed as occurring in
parallel. For the linear combination case, we can assume that
the optimal spin and photon input states can be entangled as
follows:

|ψspin-photon〉 = 1√
2
(|n1, 0, n2, 0, . . . 〉 ⊗ |1, 1, 1, . . . 〉

+ |0, n1, 0, n2, . . . 〉 ⊗ |0, 0, 0, . . . 〉). (28)

Here, ni = Ntotal
αi∑
α j
, where the sum runs over only the j

corresponding to photonic modes, denotes the number of
photons that pass through the arms of the ith interferometer.
The state in Eq. (28) is designed in such a way that the two
branches of the overall wave function accumulate relative to
each other a phase equal to the total linear combination in
which we are interested. To extract this final phase, the state
can be unitarily mapped onto a qubit, which contains all of the
accumulated phase and is then measured.

One caveat is that the linear combination protocol will
accumulate phase proportional to time for the qubits and phase
proportional to the number of photons for interferometers.
For instance, if θ1 is coupled to a qubit (and therefore has
units of frequency) and θ2 is coupled to an interferometer
(and is therefore unitless), then the two branches of our
state accumulate a relative phase θ1t + θ2n. Therefore, one
may have to adjust t or n in order to get the desired linear
combination.

VI. APPLICATIONS

Our protocol is capable of estimating any analytic func-
tion of the inputs, allowing for a large variety of potential
applications. Essentially, any time multiple sensors are pro-
cessed into a single signal, our protocol provides enhanced
sensitivity using entanglement. In fact, there is no require-
ment that different θi have the same physical origin. For
instance, a θ1 representing an electric field and θ2 measuring
a magnetic field could be used to measure the Poynting
vector.

One potential application of function measurements is the
interpolation of nonlinear functions. Suppose that an ansatz
with d tunable parameters is made for the strength of the
field in a region. With readings from �d different points, one
could determine the parameters of the ansatz and therefore
determine the value of the field at other points. Estimations of
these ansatz parameters, which are functions of the measured
fields, may potentially be improved using entangled states
depending on the figure of merit [18,31]. Note that this

procedure can be carried out even if it is difficult to invert
the ansatz in terms of the d measurements. Suppose that
θ = f (c, x) and that c = f −1(θ, x) exists, but has no closed-
form solution that can be easily evaluated. First, we make
measurements θ̂. To create an initial estimate of the values
c, we use a numerical root-finder to find estimates c̃. We can
now implement the second step of our protocol by finding the
first derivatives ∂ci/∂θ j using the matrix identity ∂θ

∂c · ∂c
∂θ

= I .
Since f is known, ∂θ/∂c can be inverted to yield the ∂c/∂θ

needed to estimate q̂ = ∂c/∂θ|θ=θ̂ · (θ − θ̂). Our final estimate
is ĉ + q̂, which was obtained without having to compute f −1

in general.
Interpolation in this manner can proceed by two different

schemes. We can either attempt to measure the ansatz pa-
rameters themselves, which allows computation of the field
at all other points, or we can skip the final computation step
by writing the field at a point of interest as a function of all
the points that can be measured. This final function can then
be directly measured using an entangled protocol, which will
be more accurate. However, the first approach has the advan-
tage that knowing the ansatz parameters allows estimation of
all points in the space in question.

One particular interpolation of interest arises in ion trap
quantum computing. In trapped ion chains, qubits are manip-
ulated using Gaussian laser beams, and two primary sources
of error are intensity and beam pointing fluctuations [32–34].
Our protocol offers better ways to characterize this noise. To
detect the field error at a qubit’s position without disturbing
the qubit, we can perform interpolation by measuring the
field’s effect on other ions, possibly of a different atomic
species, positioned nearby. Given the ansatz of the Gaussian
beam profile, we are able to calculate the field at the qubit
of interest and perhaps correct the error. As entanglement of
ions is already a key functionality for trapped ion quantum
computers, our proposal is immediately applicable in that
domain.

VII. OUTLOOK

We have presented a Heisenberg-scaling measurement
protocol using quantum sensor networks for measuring any
multivariate, real-valued, analytic function, and this proto-
col is consistent with the Heisenberg limit when measuring
functions with comparably sized gradients in each compo-
nent. Recent advances in the distribution of entanglement,
for instance in satellites distributing entangled photons more
than 1000 km [35], strengthen the viability of this scheme
over large distances in the near-term. Potential sensing plat-
forms include trapped ions and nitrogen-vacancy defects in
diamond, which can also be entangled [36–39] and are proven
platforms for magnetometry and thermometry [40,41]. Future
work may include proving the optimality of the two-step
protocol when constrained by the number of photons, which
would require extending the results of Ref. [14], as well
as further experimental research into quantum networking
to explore how entanglement can be reliably distributed for
metrological purposes.

We specifically identified field interpolation as a promising
application of our work, but we stress that our protocol can
assist in the measurement of any analytic function. More
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work remains to determine when it is optimal to measure
the coefficients of interpolation and when it is optimal to
directly measure the final function. We are also interested
in fleshing out possible intersections between quantum func-
tion estimation and machine learning. Supervised machine
learning is a type of interpolation: estimating functional
outputs for unknown inputs by extracting information from
known input-output pairs [42]. It is possible our protocol
could be used to improve the accuracy of training a ma-
chine learning model if the necessary quantity for training
was a function of physical measurements. Additionally, the
final output of many machine learning algorithms, such as
neural networks, is a nonlinear but infinitely differentiable
function of the inputs [43]. Our work could aid in comput-
ing this complicated function for new input when making
predictions.
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APPENDIX : FIGURE OF MERIT FOR THE
TWO-STEP PROTOCOL

In this Appendix, we derive Eq. (11) in the main text.
Specifically, we derive the figure of merit for the two-step
protocol in terms of the measurement accuracy of the indepen-
dent parameters and the measurement accuracy of the linear
combination, yielding a general formula that applies to any
physical realization.

For the sake of concision, let � = θ̃ − θ, which satisfies
E[�] = 0. Furthermore, let Tk be k! times the kth term of
the Taylor expansion of f [so T1 = fi(θ)�i, T2 = fi j (θ)�i� j ,
T3 = fi jk (θ)�i� j�k , etc.]. Thus, the Taylor expansion of
f (θ̃) would be

f (θ̃) = f (θ) + T1 + T2
2

+ T3
6

+ · · · . (A1)

We compute our figure of merit:

M = E[( f (θ̃) + q̃ − f (θ))2]

= E[( f (θ̃) − f (θ))2]︸ ︷︷ ︸
term 1

+E[q̃2]︸ ︷︷ ︸
term 2

+2E[ f (θ̃)q̃]︸ ︷︷ ︸
term 3

−2 f (θ)E[q̃]

=

⎛⎜⎝E
[
T 2
1

] + E[T1T2] + 1
3E[T1T3] + 1

4E
[
T 2
2

] + O(�5)︸ ︷︷ ︸
term 1

⎞⎟⎠ +

⎛⎜⎝E[Varq̃ q̃] + E[q2]︸ ︷︷ ︸
term 2

⎞⎟⎠

+ 2

⎛⎜⎝ f (θ)E[q] + E[T1q] + 1
2E[T2q] + 1

6E[T3q] + O(�5)︸ ︷︷ ︸
term 3

⎞⎟⎠ − 2 f (θ)E[q]

= E[Varq̃ q̃] + E[(q + T1)
2] + E[(q + T1)T2] + 1

3E[(q + T1)T3] + 1
4E

[
T 2
2

] + O(�5). (A2)

The actual computation of the labeled terms is rather involved
and space-consuming, so it is presented in Appendix A 1).
Notice that we may simplify

q + T1 = �i[ fi(θ) − fi(θ̃)]

= −�i[ fi j (θ)� j + O(�2)]

= −T2 + O(�3), (A3)

so Eq. (A2) evaluates to

M = E[Varq̃ q̃] + E
[
T 2
2

] − E
[
T 2
2

] − 1
3E[T2T3]

+ 1
4E

[
T 2
2

] + O(�5)

= E[Varq̃ q̃] + 1
4E

[
T 2
2

] + O(�5) (A4)

since E[T2T3] is O(�5). Now, this simplifies further as

M = E[Varq̃ q̃] + 1

4
E

[
T 2
2

]
= E[Varq̃ q̃] + 1

4
E[( fi j (θ)�i� j )

2]

= E[Varq̃ q̃] + 1

4
E

⎡⎣4
∑
i< j

fi j (θ)
2�2

i �
2
j

+ 2
∑
i< j

fii(θ) f j j (θ)�
2
i �

2
j +

∑
i

fii(θ)
2�4

i

⎤⎦ (A5)

since all terms with some �i to a single power will factor
out as E[�i] = 0. We will assume that �i ∼ N (0, 1

t21
) is

normally distributed. This is not strictly necessary as long
as the distribution of errors satisfies E[�4

i ] � O(t−4
1 ), a con-
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dition that is satisfied by phase estimation procedures like
those in Ref. [20]. However, assuming normality allows the
calculation to proceed easily, as we will be able to simplify
E[�4

i ] = 3Var θ̃2
i . Thus, we arrive at

M = E[Varq̃ q̃] + 1

4

⎛⎝4
∑
i< j

fi j (θ)
2 Var θ̃i Var θ̃ j

+ 2
∑
i< j

fii(θ) f j j (θ) Var θ̃i Var θ̃ j +
∑
i

3 fii(θ)
2 Var θ̃2

i

⎞⎠
= E[Varq̃ q̃] +

∑
i, j

2 fi j (θ) + fii(θ) f j j (θ)

4
Var θ̃i Var θ̃ j .

(A6)

1. Simplification of labeled terms

In this subsection, we present the simplification of the
labeled terms from Eq. (A2) in full detail.

Term 2 is simplified by using the definition of Varq̃ q̃.
One needs to be careful as there are two layers of expected
values—one for the values of θ̃ and one for the estimator q̃:

E[q̃2]︸ ︷︷ ︸
term 2

= Eθ̃[Eq̃[q̃
2]]

= Eθ̃[Varq̃ q̃ + Eq̃[q̃]
2]

= Eθ̃[Varq̃ q̃ + q2]

= E[Varq̃ q̃] + E[q2]. (A7)

Terms 1 and 3 are simplified by expanding the Taylor series
for f (θ̃ ) up to �4 terms; note that q = O(�), so we only need
to expand the Taylor series up to O(�3) terms:

E[[ f (θ̃) − f (θ)]2]︸ ︷︷ ︸
term 1

= E[ f (θ̃)2] − 2 f (θ)E[ f (θ̃)] + f (θ)2

= f (θ)2 + E
[
T 2
1

] + f (θ)E[T2] + E[T1T2] + 1

3
f (θ)E[T3]

+ 1

12
f (θ)E[T4] + 1

3
E[T1T3] + 1

4
E

[
T 2
2

] + O(�5)

− 2 f (θ)

(
f (θ) + 1

2
E[T2] + 1

6
E[T3]

+ 1

24
E[T4] + O(�5)

)
+ f (θ)2

= E
[
T 2
1

] + E[T1T2] + 1

3
E[T1T3] + 1

4
E

[
T 2
2

] + O(�5),

(A8)

E[ f (θ̃)q̃]︸ ︷︷ ︸
term 3

= Eθ̃[Eq̃[ f (θ̃)q̃]]

= Eθ̃[ f (θ̃)q]

= E

[(
f (θ) + T1 + T2

2
+ T3

6
+ O(�4)

)
q

]
= f (θ)E[q] + E[T1q] + E[T2q]

2

+ E[T3q]

6
+ O(�5). (A9)
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